Back To Schedule
Tuesday, July 9 • 2:55pm - 3:10pm
DeCaf: Iterative Collaborative Processing over the Edge

Sign up or log in to save this to your schedule, view media, leave feedback and see who's attending!

The increase in privacy concerns among the users has led to edge based analytics applications such as federated learning which trains machine learning models in an iterative and collaborative fashion on the edge devices without sending the raw private data to the central cloud. In this paper, we propose a system for enabling iterative collaborative processing (ICP) in resource constrained edge environments. We first identify the unique systems challenges posed by ICP, which are not addressed by the existing distributed machine learning frameworks such as the parameter server. We then propose the system components necessary for ICP to work well in highly distributed edge environments. Based on this, we propose a system design for enabling such applications over the edge. We show the benefits of our proposed system components with a preliminary evaluation.


Dhruv Kumar

University of Minnesota, Twin Cities

Aravind Alagiri Ramkumar

University of Minnesota, Twin Cities

Rohit Sindhu

University of Minnesota, Twin Cities

Abhishek Chandra

University of Minnesota

Tuesday July 9, 2019 2:55pm - 3:10pm PDT
HotEdge: Grand Ballroom VII–IX