Back To Schedule
Thursday, July 11 • 2:40pm - 3:00pm
A Retargetable System-Level DBT Hypervisor

Sign up or log in to save this to your schedule, view media, leave feedback and see who's attending!

System-level Dynamic Binary Translation (DBT) provides the capability to boot an Operating System (OS) and execute programs compiled for an Instruction Set Architecture (ISA) different to that of the host machine. Due to their performance-critical nature, system-level DBT frameworks are typically hand-coded and heavily optimized, both for their guest and host architectures. While this results in good performance of the DBT system, engineering costs for supporting a new, or extending an existing architecture are high. In this paper we develop a novel, retargetable DBT hypervisor, which includes guest specific modules generated from high-level guest machine specifications. Our system simplifies retargeting of the DBT, but it also delivers performance levels in excess of existing manually created DBT solutions. We achieve this by combining offline and online optimizations, and exploiting the freedom of a Just-in-time (JIT) compiler operating in a bare-metal environment provided by a Virtual Machine. We evaluate our DBT using both targeted micro-benchmarks as well as standard application benchmarks, and we demonstrate its ability to outperform the de-facto standard Qemu DBT system. Our system delivers an average speedup of 2.21x over Qemu across SPEC CPU2006 integer benchmarks running in a full-system Linux OS environment, compiled for the 64-bit ARMv8-A ISA, and hosted on an x86-64 platform. For floating-point applications the speedup is even higher, reaching 6.49x on average. We demonstrate that our system-level DBT system significantly reduces the effort required to support a new ISA, while delivering outstanding performance.


Tom Spink

University of Edinburgh

Harry Wagstaff

University of Edinburgh

Björn Franke

University of Edinburgh

Thursday July 11, 2019 2:40pm - 3:00pm PDT
USENIX ATC Track I: Grand Ballroom I–VI