Capabilities provide an efficient and secure mechanism for fine-grained resource management and protection. However, as the modern hardware architectures continue to evolve with large numbers of non-coherent and heterogeneous cores, we focus on the following research question: can capability systems scale to modern hardware architectures? In this work, we present a scalable capability system to drive future systems with many non-coherent heterogeneous cores. More specifically, we have designed a distributed capability system based on a HW/SW co-designed capability system. We analyzed the pitfalls of distributed capability operations running concurrently and built the protocols in accordance with the insights. We have incorporated these distributed capability management protocols in a new microkernel-based OS called SemperOS. Our OS operates the system by means of multiple microkernels, which employ distributed capabilities to provide an efficient and secure mechanism for fine-grained access to system resources. In the evaluation we investigated the scalability of our algorithms and run applications (Nginx, LevelDB, SQLite, PostMark, etc.), which are heavily dependent on the OS services of SemperOS. The results indicate that there is no inherent scalability limitation for capability systems. Our evaluation shows that we achieve a parallel efficiency of 70% to 78% when examining a system with 576 cores executing 512 application instances while using 11% of the system’s cores for OS services.